Stability Results for Scattered Data Interpolation by Trigonometric Polynomials
نویسندگان
چکیده
منابع مشابه
Stability Results for Scattered Data Interpolation by Trigonometric Polynomials
A fast and reliable algorithm for the optimal interpolation of scattered data on the torus Td by multivariate trigonometric polynomials is presented. The algorithm is based on a variant of the conjugate gradient method in combination with the fast Fourier transforms for nonequispaced nodes. The main result is that under mild assumptions the total complexity for solving the interpolation problem...
متن کاملScattered data approximation of fully fuzzy data by quasi-interpolation
Fuzzy quasi-interpolations help to reduce the complexity of solving a linear system of equations compared with fuzzy interpolations. Almost all fuzzy quasi-interpolations are focused on the form of $widetilde{f}^{*}:mathbb{R}rightarrow F(mathbb{R})$ or $widetilde{f}^{*}:F(mathbb{R})rightarrow mathbb{R}$. In this paper, we intend to offer a novel fuzzy radial basis function by the concept of so...
متن کاملStability results for scattered-data interpolation on Euclidean spheres
The present work considers the interpolation of the scattered data on the d-sphere by spherical polynomials. We prove bounds on the conditioning of the problem which rely only on the separation distance of the sampling nodes and on the degree of polynomials being used. To this end, we establish a packing argument for well separated sampling nodes and construct strongly localized polynomials on ...
متن کاملStability Results for Scattered Data Interpolation on the Rotation Group
Abstract. Fourier analysis on the rotation group SO(3) expands each function into the orthogonal basis of Wigner-D functions. Recently, fast and reliable algorithms for the evaluation of finite expansion of such type, referred to as nonequispaced FFT on SO(3), have become available. Here, we consider the minimal norm interpolation of given data by Wigner-D functions. We prove bounds on the cond...
متن کاملInterpolation lattices for hyperbolic cross trigonometric polynomials
Sparse grid discretisations allow for a severe decrease in the number of degrees of freedom for high dimensional problems. Recently, the corresponding hyperbolic cross fast Fourier transform has been shown to exhibit numerical instabilities already for moderate problem sizes. In contrast to standard sparse grids as spatial discretisation, we propose the use of oversampled lattice rules known fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2007
ISSN: 1064-8275,1095-7197
DOI: 10.1137/060665075